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Abstract

Temperature profiles in a fluid flow inside a porous vertical channel influenced by the presence of variable
thermal conductivity and dissipation function are important features in the study of magneto hydro dynamics.
In this study, the effects of temperature and variable fluid properties on unsteady hydro magnetic flow of a
radiating gas inside a porous were investigated. The coupled nonlinear partial differential equations derived
from the governing equations of the fluid were solved by the method of successive approximation techniques. It
was found that the dissipation function was completely neglected at the centre line but maximum at the wall of
the channel where a fully developed temperature profiles reached its peak. The heat flow balances at the wall
due to high temperature and dissipation function.
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Abbreviations and Symbols

B — Induced Magnetic Field Vector U, V, W — Orthogonal Velocity Components
H — Applied Magnetic Field Vector X, Y, Z, t — Cartesian coordinate and time
V — Fluid Velocity Vector M — Hartman Number

gr — Radiation Flux Vector P, — Prandtl number

C, — Specific Heat at Constant Pressure G, — Grashof number

g — Gravitational Acceleration Re — Reynold’s number

¢ - Half Width Channel Rm — Magnetic Reynold’s number

P — Pressure o — Thermal diffusivity

or — Roseland Mean Absorption Coefficient B - Volumetric expansion coefficient

T — Temperature u— Viscosity of fluid

T — Wall Temperature ' —Magnetic Permeability

T — Final Temperature T =T+ ¢ p — Reference density of fluid

Ts — Temperature of Static Fluid v — Kinematic viscosity of fluid (%j
0 — Temperature Difference T - T o.— Electrical conductivity of the fluid

K — Thermal Conductivity
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1.0 Introduction

Deformation and flow of materials require mechanical energy which is dissipated and converted to internal energy in
form of heat. During the process, dissipative energy flow is converted into internal energy of the material. The velocity,
applied magnetic field and dissipation function effect have already been considered in some studies [1-3]. For example,
an important work on heat transfer is that of the effect of magnetic field on forced convective heat transfer in parallel
plates [4, 5]. This is followed by the heat effect of transverse magnetic field on heat transfer to an electrically and
thermally radiating fluid in a parallel plane channel [6] and the influence of electric and magnetic fields on heat transfer
to electrically conducting fluid [7].

The radiating effect on thermal instability of a flow in a porous medium between two rotating cylinders has also been
studied [8]. Furthermore, the unsteady hydro magnetic flow of a radiating gas in a vertical channel using different
approximation for optically thin non-grey gas near equilibrium was also investigated [8]. The effect of dissipation
function in the presence of transverse magnetic field on unsteady hydro magnetic flow of a radiating gas, electrically
conducted inside a vertical channel was equally studied [9]. Similarly, the effect of thermo physical parameter on
electrically conducting fluid inside a porous vertical channel involving dissipative function has been studied [9] with the
influence of dissipation function on the temperature profile, usually neglected in some studies [7,10,11]. It was these
results that prompted further investigation of the effects of dissipation function and variable thermal conductivity on the
temperature profiles of a hydro magnetic flow due to induced magnetic field in a given vertical wall.

2.0 Methods

2.1 Mathematical Formulation and Methods of Solution

The Momentum, Magnetic Fields and Radiation Equations with Dissipation function in terms of Cartesian, Cylindrical
and Spherical Coordinates have been provided [2].
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2.2 Physical Problem Model and Governing Equations

Consider the physical problem which consists of an infinite channel formed by parallel plates at a distance ¢ apart where
a magnetic field, H, is applied across the ends of the channel, the plates aty = £ and y = 0 are maintained at temperature
t = 1 and 0 respectively with an electrically conducting fluid under pressure flow through it. The surface temperature is
assumed to vary linearly along the vertical direction taken as x — axis. The physical configuration of the problem is
sketched in Figure 1.
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Fig. 1: Physical Model and Coordinate System

The channel walls are assumed electrically non-conducting, where the magnetic field is zero at the plate, y= ¢ andy =0
for fully developed laminar flow, the velocity and induced magnetic field have only a vertical component and all of the
physical variables are function of time (t) except temperature and pressure. Equations (4) to (6) are the governing
equations of momentum, magnetic and dissipation function along the y — axis;
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The equation of continuity is identically satisfied and the viscous dissipation function that is usually neglected had been
retained in equation (6) in this model. This study deals with the optically thick limit case, where heat transport in the
material is by local radiation and absorption. The transport process is analogous to conduction, and the local net radiation
aty is given by

, _ 160cT® aT

dy = 3 oy

(7
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The calculation of temperature fields requires the solution of the dissipation function with radiation effect. The equation
is conveniently rewritten in dimensionless form and the generation number, M’, which is the dissipation term in equation
6 is rewritten in simple form;

DT 1
0% o= =kV?T + =y (8)
Dt 2

The fluid is assumed to be purely viscous and of constant viscosity. The thermal properties 7, o k are assumed to be

constant. The viscosity has to be specified as a function of temperature; and deformation rate: %t is a substantial time

derivative.

or oT
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The equation of energy is made dimensionless by scaling it with the factor HKATO

Thus, equation (8) becomes
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The physical model is constructed in such a way that
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where, V is the velocity of the fluid, H is the magnetic field and ¢ r is the heat flux. The electromagnetic unit has been

employed so that the parameter p of free space is unity such that.
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Applied Magnetic Equations:
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Energy Transport Equation:
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where the expression for q'y in equation (7) has been made use of.

Equations (3) to (6) are solved subject to non-dimensional quantities boundary conditions:

u=H=00=0t=0
(19)
u=H=10=1t=1
2.3 Solution Using Successive Approximation Techniques
The following equations are solved using the successive approximation techniques;
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Equations (20) to (22) were used to obtain 6y. In doing this, the non- linear terms in equation (22) was ignored. From
equation (22), 6, was obtained as [4]

0, (y,t)= 20" (zm —ﬂ’zy) (23)
where
)
A= (24)
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The magnetic field, Hy was obtained by re-arranging of equation (21), using approximate analytical techniques
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where
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Having obtained Hy and 6y, uy was obtained from equation (20) as follows:
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Therefore, the complete solution becomes
2, 2.
U, =Be" "™ yce ™™ 4+ Be™* +B,e™* +B,e™ ™ +B,e% +By (37)

To obtain 0,t needed for developing the temperature profiles influenced by dissipative function, we use equation (23),
(27) and (33). In order to do this replace all the non-linear terms in (22) with
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Where, ci =i =1, 2, are obtained from equation (39) as follows;
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3.0 Results and Discussion

The set of coupled partial differential equation together with the associated boundary conditions have been solved using
successive approximation technique. The numerical results were then obtained by simulation to establish the effect of the
dissipation function as a result of temperature difference at any specific time (t). In doing this, the values of the following
parameters; R, = 20, P, = 0.50, R, = 0.05, Gr = 0.5 and dissipative function, M’ ranging between 1 and 3 were adopted to
obtain the approximate values of the temperature by numerical approach for physical realistic solutions (Table 1). The
numerical results which describe the temperature profile as a function of dissipation function inside the porous vertical
channels is presented in Figure 1. The temperature profiles due to variable parameters; thermal conductivity parameter (o
=0, 1) and dissipative parameter (M = 0, 1) were adopted to obtain the numerical relationship between variable thermal
conductivity (c) and dissipation function (M) of the fluid temperature as presented in Table 2. The dissipation function
was zero at the center line and has its maximum value at the wall of the vertical channel, when the temperature in the
pipe flow demonstrate the non-uniformity of the viscous dissipation as a result of increase in temperature [2,11,12].

Large radial temperature difference gives rise to conduction of heat towards the wall where a fully developed temperature
is reached when the heat flow balances the viscous heat generation. It was also observed that the temperature increases as
values of the dissipation function increases at specific given time and when the variable thermal conductivity is
neglected, the dissipation function effect increases the temperature to higher values. This implies that the effect of
dissipation function and thermal conductivity on unsteady hydro magnetic flow inside the parallel plate has a
measureable influence on the fluid inside the porous channel as a result of radiation.

Table 1: Temperature Profiles with Varying Dissipation Function (M’) at Specified Time (T)

t=01 t=0.2 t=0.3 t=04 t=05
.2550892E - 01 .6128340E- 01 .1721104E+ 00 .3131268E+ 00 .4927140E+ 00
.8389408E+ 00 .7508434E+ 00 .633674E+ 00 .4798913E+ 00 .2799398E+ 00
M =1 .3629186E+ 01 .3580184E+ 01 .3496833E+ 01 .3369903E+ 01 .3187672E+ 01
.1281979E+ 02 .1294958E+ 02 .1304141E+ 02 .1308403E+ 02 .1306311E+ 02
4263970E+ 02 .4340876E+ 02 4414467E+ 02 .4483374E+ 02 .4545843E+ 02
4342904E - 01 .1303282E+ 00 .3521586E+ 00 .6343720E+ 00 .2022308E+ 01
.1653465E+ 01 .1476716E+ 01 .1241812E+ 01 .9336649E+ 00 .6502979E+ 00
M =2 .7180083E+ 01 .7080308E+ 01 .6911798E+ 01 .6656087E+ 01 .5093317E+ 02
.2539088E+ 02 .2564490E+ 02 .2582290E+ 02 .2590235E+ 02 .2521757E+ 02
.8450879E+ 02 .8603025E+ 02 .8748509E+ 02 .8884586E+ 02 .9195697E+ 02
.61349076E-01 .1993730E+ 00 .5322072E+ 00 .9556176E+ 00 .1492948E+ 01
.2467989E+ 01 .2202589E+ 01 .1849948E+ 01 .1387438E+ 01 .7863974E+ 01
M =3 .1073098E+ 02 .1058043E+ 02 .1032676E+ 02 .9942272E+ 01 .9391796E+ 01
.3796197E+ 02 .3834022E+ 02 .3860439E+ 02 .3872066E+ 02 .3864605E+ 02
.1263779E+ 03 .1286518E+ 03 .1308255E+ 03 .1328580E+ 03 .1346966E+ 03
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Table 2: The Relationship Between Dissipation Function (M) And Variable Thermal Conductivity (o)

a=0 M!=0

a=1 M!'=0

a=0 M'=1

.7588787E — 02

.76442510E — 02

.2550892E - 01

.2441628E - 01

.2499146E - 01

.3629186 E + 0°

.7828806E — 01 .8425018E - 01 .3629186E + 0°
.2487031E + 00 .3105059E + 00 .1281979E + 02
.7706148E + 00 .1491274E + 01 42639970 + 02
I
M |
H |
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Fig. 2: Dissipation Function Distribution as a Result of Temperature difference

4.0 Conclusion

The temperature profiles associated with the effects of dissipation function and thermal conductivity parameter of a
hydro magnetic flow due to an induced magnetic field in a given vertical wall was presented. The distribution indicates
the influence of dissipation function on the unsteady hydro magnetic fluid flow as a result of radiation, with high
temperature invoked due to the flow current which is placed in a transverse magnetic field. The primary conclusion is
that for a combined adverse thermal and dissipation function in the presence of radiative heat transfer, the mode in which
the instability sets in is completely governed by the radiating effect.
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