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Abstract 

Temperature profiles in a fluid flow inside a porous vertical channel influenced by the presence of variable 

thermal conductivity and dissipation function are important features in the study of magneto hydro dynamics. 

In this study, the effects of temperature and variable fluid properties on unsteady hydro magnetic flow of a 

radiating gas inside a porous were investigated. The coupled nonlinear partial differential equations derived 

from the governing equations of the fluid were solved by the method of successive approximation techniques.  It 

was found that the dissipation function was completely neglected at the centre line but maximum at the wall of 

the channel where a fully developed temperature profiles reached its peak. The heat flow balances at the wall 

due to high temperature and dissipation function.  
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Abbreviations and Symbols  

 

B – Induced Magnetic Field Vector   U, V, W – Orthogonal Velocity Components 

H – Applied Magnetic Field Vector   x, y, z, t – Cartesian coordinate and time  

V – Fluid Velocity Vector    M – Hartman Number 

qr – Radiation Flux Vector    Pr – Prandtl number 

Cp – Specific Heat at Constant Pressure   Gr – Grashof number 

g – Gravitational Acceleration    Re – Reynold’s number 

  - Half Width Channel     Rm – Magnetic Reynold’s number 

P – Pressure       – Thermal diffusivity 

R – Roseland Mean Absorption Coefficient   - Volumetric expansion coefficient 

T – Temperature     – Viscosity of fluid 

Tw – Wall Temperature      –Magnetic Permeability 

Tf – Final Temperature Tf = Tf +     – Reference density of fluid 

Ts – Temperature of Static Fluid     – Kinematic viscosity of fluid 








  

 – Temperature Difference T
*
 - T   c – Electrical conductivity of the fluid 

K – Thermal Conductivity 
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1.0 Introduction  

 

Deformation and flow of materials require mechanical energy which is dissipated and converted to internal energy in 

form of heat.  During the process, dissipative energy flow is converted into internal energy of the material. The velocity, 

applied magnetic field and dissipation function effect have already been considered in some studies [1-3]. For example, 

an important work on heat transfer is that of the effect of magnetic field on forced convective heat transfer in parallel 

plates [4, 5]. This is followed by the heat effect of transverse magnetic field on heat transfer to an electrically and 

thermally radiating fluid in a parallel plane channel [6]  and the influence of electric and magnetic fields on heat transfer 

to electrically conducting fluid [7]. 

 

The radiating effect on thermal instability of a flow in a porous medium between two rotating cylinders has also been 

studied [8]. Furthermore, the unsteady hydro magnetic flow of a radiating gas in a vertical channel using different 

approximation for optically thin non-grey gas near equilibrium was also investigated [8]. The effect of dissipation 

function in the presence of transverse magnetic field on unsteady hydro magnetic flow of a radiating gas, electrically 

conducted inside a vertical channel was equally studied [9]. Similarly, the effect of thermo physical parameter on 

electrically conducting fluid inside a porous vertical channel involving dissipative function has been studied [9] with the 

influence of dissipation function on the temperature profile, usually neglected in some studies [7,10,11]. It was these 

results that prompted further investigation of the effects of dissipation function and variable thermal conductivity on the 

temperature profiles of a hydro magnetic flow due to induced magnetic field in a given vertical wall. 

 
 

2.0 Methods 

 

 

2.1  Mathematical Formulation and Methods of Solution 

 

The Momentum, Magnetic Fields and Radiation Equations with Dissipation function in terms of Cartesian, Cylindrical 

and Spherical Coordinates have been provided [2]. 
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2.2  Physical Problem Model and Governing Equations 

Consider the physical problem which consists of an infinite channel formed by parallel plates at a distance   apart where 

a magnetic field, H, is applied across the ends of the channel, the plates at y =   and y = 0 are maintained at temperature 

t = 1 and 0 respectively with an electrically conducting fluid under pressure flow through it. The surface temperature is 

assumed to vary linearly along the vertical direction taken as x – axis. The physical configuration of the problem is 

sketched in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Physical Model and Coordinate System 

 

The channel walls are assumed electrically non-conducting, where the magnetic field is zero at the plate, y =   and y = 0 

for fully developed laminar flow, the velocity and induced magnetic field have only a vertical component and all of the 

physical variables are function of time (t) except temperature and pressure. Equations (4) to (6) are the governing 

equations of momentum, magnetic and dissipation function along the y – axis; 
 

)( 20

2

0 TTgs
y

H
H

y

u

y

u
v

t

u

s 





























                         (4) 






























t

H

y

H
v

y

u
H

y

H 



0002

                            (5) 

 
2

0

3

0

20

2

1
3

16
























































yy

TT

yy

T
k

y

T
v

t

t
cs








      (6) 

 

The equation of continuity is identically satisfied and the viscous dissipation function that is usually neglected had been 

retained in equation (6) in this model. This study deals with the optically thick limit case, where heat transport in the 

material is by local radiation and absorption. The transport process is analogous to conduction, and the local net radiation 

at y is given by  
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The calculation of temperature fields requires the solution of the dissipation function with radiation effect. The equation 

is conveniently rewritten in dimensionless form and the generation number, M, which is the dissipation term in equation 

6 is rewritten in simple form; 
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The physical model is constructed in such a way that 
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where, V is the velocity of the fluid, H  is the magnetic field and rq is the heat flux. The electromagnetic unit has been 

employed so that the parameter  of free space is unity such that.  
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Applied Magnetic Equations: 
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where the expression for yq in equation (7) has been made use of.  

Equations (3) to (6) are solved subject to non-dimensional quantities boundary conditions:  
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2.3  Solution Using Successive Approximation Techniques 

The following equations are solved using the successive approximation techniques;  
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Equations (20) to (22) were used to obtain 0. In doing this, the non- linear terms in equation (22) was ignored. From 

equation (22), 0 was obtained as [4] 
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The magnetic field, H0 was obtained by re-arranging of equation (21), using approximate analytical techniques  
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Having obtained H0 and 0, u0 was obtained from equation (20) as follows: 
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Solving equation (31) to obtain,  
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Obtain particular integral of u0 as  
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Therefore, the complete solution becomes 
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To obtain 1t needed for developing the temperature profiles influenced by dissipative function, we use equation (23), 

(27) and (33). In order to do this replace all the non-linear terms in (22) with 
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Where, ci = i = 1, 2, are obtained from equation (39) as follows; 
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3.0 Results and Discussion 

 

The set of coupled partial differential equation together with the associated boundary conditions have been solved using 

successive approximation technique. The numerical results were then obtained by simulation to establish the effect of the 

dissipation function as a result of temperature difference at any specific time (t). In doing this, the values of the following 

parameters; Re = 20, Pr = 0.50, Rm = 0.05, Gr = 0.5 and dissipative function, M ranging between 1 and 3 were adopted to 

obtain the approximate values of the temperature by numerical approach for physical realistic solutions (Table 1). The 

numerical results which describe the temperature profile as a function of dissipation function inside the porous vertical 

channels is presented in Figure 1. The temperature profiles due to variable parameters; thermal conductivity parameter ( 

= 0, 1) and dissipative parameter (M
’ 
= 0, 1) were adopted to obtain the numerical relationship between variable thermal 

conductivity () and dissipation function (M
’
) of the fluid temperature as presented in Table 2. The dissipation function 

was zero at the center line and has its maximum value at the wall of the vertical channel, when the temperature in the 

pipe flow demonstrate the non-uniformity of the viscous dissipation as a result of increase in temperature [2,11,12].  

 

Large radial temperature difference gives rise to conduction of heat towards the wall where a fully developed temperature 

is reached when the heat flow balances the viscous heat generation. It was also observed that the temperature increases as 

values of the dissipation function increases at specific given time and when the variable thermal conductivity is 

neglected, the dissipation function effect increases the temperature to higher values. This implies that the effect of 

dissipation function and thermal conductivity on unsteady hydro magnetic flow inside the parallel plate has a 

measureable influence on the fluid inside the porous channel as a result of radiation.  

 
Table 1:  Temperature Profiles with Varying Dissipation Function (M’) at Specified Time (T) 

 
 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 

 

 

M = 1 

 

.2550892E – 01 

.8389408E+ 00  

.3629186E+ 01 

.1281979E+ 02 

.4263970E+ 02 

.6128340E– 01 

.7508434E+ 00 

.3580184E+ 01 

.1294958E+ 02 

.4340876E+ 02 

.1721104E+ 00 

.633674E+ 00 

.3496833E+ 01 

.1304141E+ 02 

.4414467E+ 02 

.3131268E+ 00 

.4798913E+ 00 

.3369903E+ 01 

.1308403E+ 02 

.4483374E+ 02 

.4927140E+ 00 

.2799398E+ 00 

.3187672E+ 01 

.1306311E+ 02 

.4545843E+ 02 

 

 

M = 2 

 

.4342904E – 01  

.1653465E+ 01 

.7180083E+ 01 

.2539088E+ 02 

.8450879E+ 02 

.1303282E+ 00 

.1476716E+ 01 

.7080308E+ 01 

.2564490E+ 02 

.8603025E+ 02 

.3521586E+ 00 

.1241812E+ 01 

.6911798E+ 01 

.2582290E+ 02 

.8748509E+ 02  

.6343720E+ 00 

.9336649E+ 00 

.6656087E+ 01 

.2590235E+ 02 

.8884586E+ 02 

.2022308E+ 01 

.6502979E+ 00 

.5093317E+ 02 

.2521757E+ 02 

.9195697E+ 02 

 

 

M = 3 

 

 

.61349076E–01 

.2467989E+ 01 

.1073098E+ 02 

.3796197E+ 02 

.1263779E+ 03  

.1993730E+ 00 

.2202589E+ 01 

.1058043E+ 02 

.3834022E+ 02 

.1286518E+ 03 

.5322072E+ 00 

.1849948E+ 01 

.1032676E+ 02 

.3860439E+ 02 

.1308255E+ 03 

.9556176E+ 00 

.1387438E+ 01 

.9942272E+ 01 

.3872066E+ 02 

.1328580E+ 03 

.1492948E+ 01 

.7863974E+ 01 

.9391796E+ 01 

.3864605E+ 02 

.1346966E+ 03 



Bello & Mustapha                                   Al-Hikmah Journal of Pure & Applied Sciences Vol. 2, No. 1 (2015): 26-35 

34 
 

 
Table 2: The Relationship Between Dissipation Function (M’) And Variable Thermal Conductivity () 

 

 = 0     
1M = 0  = 1     

1M = 0  = 0     
1M = 1 

.7588787E – 02  .76442510E – 02 .2550892E – 01  

.2441628E – 01 .2499146E – 01  .3629186 E + 0
0
 

.7828806E – 01  .8425018E – 01  .3629186E + 0
0
 

.2487031E + 00 .3105059E + 00 .1281979E + 02 

.7706148E + 00 .1491274E + 01 .42639970 + 02 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2: Dissipation Function Distribution as a Result of Temperature difference 

 

4.0 Conclusion 

 

The temperature profiles associated with the effects of dissipation function and thermal conductivity parameter of a 

hydro magnetic flow due to an induced magnetic field in a given vertical wall was presented. The distribution indicates 

the influence of dissipation function on the unsteady hydro magnetic fluid flow as a result of radiation, with high 

temperature invoked due to the flow current which is placed in a transverse magnetic field. The primary conclusion is 

that for a combined adverse thermal and dissipation function in the presence of radiative heat transfer, the mode in which 

the instability sets in is completely governed by the radiating effect. 
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